MTH 530, Abstract Algebra I (graduate) Fall 2012 ,HW number FOUR (Due: Sat. at 1pm November 3)

Ayman Badawi

QUESTION 1. (i) Assume that G is a group and $a \in G$ such that $a b=b a$ for some $b \in G$. Prove that $a b^{-1}=b^{-1} a$.
(ii) We need this concept: Let G be a group and define $Z(G)=\{a \in G \mid a b=b a$ for every $b \in G\}$. $\mathrm{Z}(\mathrm{G})$ is called the center of the group G (i.e. $\mathrm{Z}(\mathrm{G})$ is the set of all elements in G where each element in $\mathrm{Z}(\mathrm{G})$ commutes with every element in G). Prove that $Z(G)$ is a normal subgroup of G
(iii) Let G be a group such that $G / Z(G)$ is a cyclic group. Prove that G is abelian group.
(iv) Prove that A_{4} does not have a normal subgroup of order 3 .
(v) We know A_{n} is simple when $n \geq 5$. Prove that $K=\{(1),(12) o(34),(13) 0(24),(14) o(23)\}$ is a normal subgroup of A_{4} and hence A_{4} is not simple. Construct a nontrivial group homomorphism from A_{4} / K into A_{3}. Find Range(f), $\operatorname{Ker}(\mathrm{f})$.
(vi) If D is a normal subgroup of a group G and F is a subgroup of D, then F needs not be a normal subgroup of G. However, prove the following: Let D be a cyclic normal subgroup of a group G and let F be a subgroup of D. Prove that F is a normal subgroup of G.
(vii) (nice problem): Let G be a group of order $2 q$ for some prime number $q \geq 3$ and assume that G has a normal subgroup of order 2. Prove that G is a cyclic group.
(viii) Assume that a group G has EXACTLY 10710 elements of of order 11. How many subgroups of order 11 does G have?

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

