MTH 530, Abstract Algebra I (graduate) Fall 2012 ,HW number FOUR (Due: Sat. at 1pm November 3)

Ayman Badawi

QUESTION 1. (i) Assume that G is a group and $a \in G$ such that ab = ba for some $b \in G$. Prove that $ab^{-1} = b^{-1}a$.

- (ii) We need this concept: Let G be a group and define $Z(G) = \{a \in G | ab = ba \text{ for every } b \in G\}$. Z(G) is called the center of the group G (i.e. Z(G) is the set of all elements in G where each element in Z(G) commutes with every element in G). Prove that Z(G) is a normal subgroup of G
- (iii) Let G be a group such that G/Z(G) is a cyclic group. Prove that G is abelian group.
- (iv) Prove that A_4 does not have a normal subgroup of order 3.
- (v) We know A_n is simple when $n \ge 5$. Prove that $K = \{(1), (1 \ 2)o(3 \ 4), (1 \ 3)0(2 \ 4), (1 \ 4)o(2 \ 3)\}$ is a normal subgroup of A_4 and hence A_4 is not simple. Construct a nontrivial group homomorphism f from A_4/K into A_3 . Find Range(f), Ker(f).
- (vi) If D is a normal subgroup of a group G and F is a subgroup of D, then F needs not be a normal subgroup of G. However, prove the following: Let D be a cyclic normal subgroup of a group G and let F be a subgroup of D. Prove that F is a normal subgroup of G.
- (vii) (nice problem): Let G be a group of order 2q for some prime number $q \ge 3$ and assume that G has a normal subgroup of order 2. Prove that G is a cyclic group.
- (viii) Assume that a group G has EXACTLY 10710 elements of of order 11. How many subgroups of order 11 does G have?

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com